

Winner Central Air Conditioning Equipments Co. L.L.C.

P.O. Box: 7265, Umm Al Quwain-UAE, Tel: 06 7667063, 06-7667064 Fax:06 7667065

Email: winnerac@eim.ae

ABOUT US

Winner central air conditioning equipments to LLC since 2006 has operated in the Middle East. Over these last years it has engaged in the manufacturing of quality air outlet products for the air conditioning industry. Our progressive growth is attributed to the hands-on approach by the top management. We have under taken and successfully executed projects for housing schemes, shopping malls, hotels, hospitals, mosque, office compleses etc...

Winner central air conditioning equipments co LLC is about commitment to excellence, building relationship, expanding horizon, evaluating standards, redefining quality and also devoted to proving the highest level of customer service. It is our customer care professionals and product application engineers that continue to make Winner central air conditioning equipments co LLC the top choice for engineers, architects and contractors in the building constructions process in the middle fast.

Catalogue Index

	dillies & Registers	
Chapter 2	Linear Bar Grilles	S
Chapter 3	Egg Crate Grilles	C
Chapter 4	Door Grilles	2
Chapter 5	Ceiling Diffusers	2
Chapter 6	Linear Slot Diffusers	6
Chapter 7	Perforated Ceiling Diffusers	6
Chapter 8	Disc Valves	U
Chapter 9	Round Ceiling Diffuser	
Chapter 10	Jet Deffusers	(
Chapter 11	Sand Trap Louvers	0
Chapter 12	Air Louver	5
Chapter 13	None Return Dempers	0
Chapter 14	Jet nozzels	6
Chapter 15	Volume Control Dampers	æ
Chapter 16	Access Doors	•
Chapter 10	Access 50013	1

General Description:

The winner central air conditioning double & single deflection grilles are purpose designed for first- class performance in supply or return air system.

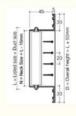
• The front set of blade care be supplied in either a horizontal or vertical orientation, on double

- The front set or blade cane be supplied in either a nonzontal or vertical orientation, on double deflection grilles the rear blades are fixed in the opposite orientation to the front set.
- Special grille types include a hinged filter assembly and curved grille suitable for circular duct installation.
- Accessories include an opposed blade damper, finished in matt RAL 9005 black color.
- As standard the grille is supplied in either off white RAL 9010 or white RAL 9016 polyester powder paint.
- Alterative colors are available on special request, at extra cost.

Construction:

Frame: High quality extrude aluminum profile with 30 mm flange width as standard.20, 24mm flange widths are optional.

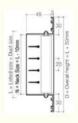
Blades: Aerofoil blade from aluminum profiles.


Blade Spacing: As standard all single or double deflection blade are set on a pitch of 20 mm and blades are manually adjusted. To ensure smooth operation and easy setting each blade is mounted in nylon bushes.

Fixing: Standard installation method is by front screw fixing or with concealed spring clips.

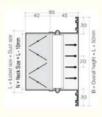
DOUBLE DEFLECTION REGISTER

Model: SH-WG



- Horizontal front face blade
- Vertical rear blades
- If the grill width more than 500mm, a million will be fixed at the center and for widths of one meter and above, the number of mullions will be two or more.

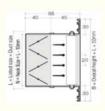
Model: SV-WG



- Vertical front face blade
- Horizontal rear blades
- If the grill width more than 500mm, a million will be fixed at the center and for widths of one
 meter and above, the number of mullions will be two or more.

DOUBLE DEFLECTION REGISTER

Model: SHD-WG



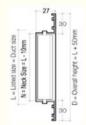
- Horizontal front face blade with damper
- Vertical rear blades
- If the grill width more than 500mm, a million will be fixed at the center and for widths of one meter and above, the number of mullions will be two or more.

Model: SVD-WG

- Vertical front face blade with damper
- Horizontal rear blades
- If the grill width more than 500mm, a million will be fixed at the center and for widths of one
 meter and above, the number of mullions will be two or more

RETURN AIR GRILLE

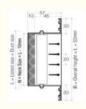
Model: RH-WG



- Fixed Horizontal blades at 45° angle as standard
- Screw or concealed fixing option.
 - If the grill width more than 500mm, a million will be fixed at the center and for widths of one meter and above, the number of mullions will be two or more

Model: RV-WG

- Fixed vertical blades at 45* angle as standard
- Screw or concealed fixing option.


Note: Return Air Register or Return Air Grille available with opposed blade dampers.

Central Air Conditioning Equipments Co. L.L.C.

FRESH AIR GRILLE

Model: SH-F-WG

- Double frame of grille & filter
- Fixed front face blades
- Grille frame is hinged withfilter frame.
- Removable and washable aluminium media filter.

Model: SC-WG

- Single and Duble deflection blades Both horisontal and vertical front facing blades
- Normal opposed blade bapers are optanal.
- - Fixing Screw or concealed spring clips

CFM	Listed Size in mm x mm	200	x 100	250 : 200 : 150 :		250:	x 150 x 125 x 100	300	150 125 100	350	x 150 x 125 x 100
Misec	Area factor Deflection	0.0191	0.0093 45°	00199	0.0102 45	0.0214 0*	0.0113 49	0.0246	00142	0.0269 0°	0.0189 45
100 0.0472	Face vel P. mm HsO Throw in (M) N.C	247 043 425.4 15	508 1.45 2.7-4.8 19	237 035 39-55 <15	463 1.22 3049 16	221 033 3952 <15	4.18 1.04 3.049 <15	1,92 0,23 4,95,2 <15	3.32 0.69 2.7-4.6 <15		
150 0.0708	Face vel P. mm HsO Throw in (M) N.C	3.71 0.99 4.9-6.4 18	7.61 3.23 3.6-5.8 24	356 0.78 4.6-6.1 16	694 272 37-55 21	331 074 436.1 c15	627 231 3752 16	287 053 436.1 <15	498 1.55 3.452 <15	263 0.46 4.05.8 <15	4.19 1.07 3.449 <15
200 0.0945	Face vel Primm HsO Throw in (M) N.C	495 1,77 5,27,3 21	10.16 5.76 4.3-6.4 28	4.75 1.39 5.2-7.0 19	925 488 4361 25	4.42 13 497.0	836 412 3961 24	384 094 4967 15	6.65 2.77 4.0-5.8 20	3.51 0.81 4.6-6.7 <15	5.59 1.88 4.0-5.8 15
250 0.1181	Face vel Primm HuO Throw in (M) N.C	6.18 2.76 5.8-7.9 28	12.69 9.02 4,8-7,0 35	5.93 2.18 5.8-7.9 27	11.58 7.62 49.70 32	552 20 5576 24	10.45 6.45 4.9-6.7 31	480 1.45 5.47.6 21	832 432 4667 77	439 124 5278 17	6.988 2.95 4.6-6.7 23
300 0.1417	Face vel P-mm HsO Throw in (M) N.C	7.42 3.96 5.8-8.2 34	15.24 13.21 5.2-7.3 40	7.12 3.15 58-8.2 31	13.89 10.92 5.2-7.3 38	882 29 5882 28	1254 927 5273 36	576 21 5882 26	938 622 5273 33	527 1.8 5.88.2 23	838 424 52-73 30
350 0.1653	Face vel R-mm HsO Throw in (M) N.C	8.65 5.38 7.0-9.8 37	17.77 17.53 5.88.2 45	831 432 67-95 35	1621 1438 5882 42	7.72 39 67-95 32	14.63 12.57 5.47.9 39	6.72 2.87 6.4-9.2 30	11.64 851 5.4-7.9 37	6.14 2.46 6.49.1 28	9.78 5.77 5.4-7.9 35
400 0.1889	Face vel Pimm Ho Throw in (M) N.C			9.49 5.61 7.6-10.4 38	1852 1956 67-9.1 45	883 5.13 73.10.4 36	1672 1651 6488 42	7.68 3.76 7.0-10.1 34	13.30 11.05 6.1-8.5 40	7022 32 6748 32	11.18 7.52 6.1-8.5 38
450 0.2125	Face vel Pi mm HuO Throw in (M) NLC							8.64 4.72 7.3-10.7 39	14.96 13.97 6.74.1 43	7.899 4.06 7.0-10.4 36	1257 953 6488 42
500 0.2362	Face vel Pr.mm.HuO Throw in (M) N.C									8.78 5.00 7.3-10.9 40	13.57 11.74 6.7-7.4 45

- Face velocity is measured in m/sec.
- Total pressure loss in mm of H₂O & Area factor in soure meter.
- Throw(meters)is measured for a terminal velocities of o.5 & 0.25 m/sec.
 - NC baced on a room attenuation of 10 dB.

CPM Mitec	Listed Size in mm x mm	250 r 350 r 400 r 500 r	x 150 x 125	4001	200 150 125	450 500 600	1250 175 130 135 135 135	300 x 350 x 450 x 600 x	250 200	350 x 400 x 500 x 750 x	250
	Area factor Deflection	0.028	00178 457	0.0324	0.022 49	0.039	0.0288 45°	0.0469 0'	0.0369 45 ⁹	0.0528	0.0422 45
200 0.0945	Face vel Primm HsO Throw in (M) N.C	3.38 0.64 4.5-6.7 <15	531 1,7 3,758 <15	291 036 4567 <15	4.30 1.17 3.765 <15	2.42 0.23 4.6-6.7 <15	328 0.71 3.455 <15	20 0.15 46-6.7 <15	256 0.41 3.1-6.5 <15		
250 0.1181	Face vel P. mm H ₂ O Throw in (M) N.C	422 0.99 5.2-7.6 15	6.63 2.64 4.66.7 21	3.65 0.58 5.2-7.6 <15	5.37 1.83 4.3-6.7 18	303 0.36 5.2-7.6 <15	41 1.12 4364 <15	252 0.23 5.2-7.6 <15	3201 0.61 3.9-6.4 <15	224 0.18 52-7.3 <15	279 0.41 36-60 <15
300 0.1417	Face vel P-mm H-O Throw in (M) N.C	5.06 1.42 5.8-8.2 20	796 381 5273 27	437 084 5882 17	644 262 5273 22	363 051 58-82 <15	492 1.5 48-7.3	302 0.33 58-8.2 <15	3.84 0.89 4.8-7.3 <15	268 0.25 55-7.9 <15	336 058 4970 <15
400 0.1889	Face vel Pimm HiO Throw in (M) N.C	6.75 2.51 6.7-9.8 29	106 673 6488 36	5.83 1.47 6.7-9.8 34	859 4,67 6,1-8,5 27	4.84 0.91 6.7-9.8	656 287 58-85 21	403 061 67-95 <15	5.19 1,6 5.8-8.2 17	358 0.46 6.7-9.5 <15	447 107 5582 <15
500 0.2362	Face vel P. mm H.O Throw in (M) N.C	8.44 3.91 7.3-10.9 35	13.27 10.54 6.7-9.2 42	729 228 73-109 30	10.74 7.24 6.7-9.1 32	6.06 1.45 7.6-11.0 26	82 4.07 6.49.1 28	5036 0.94 7.9-11.3 18	6.4 2.46 6.4-9.1 24	4.47 0.71 7.6-11.3	559 1.65 82-9.1 19
600 0.2834	Face vel Pi mm H ₂ O Throw in (M) N.C			875 33 85-122 36	12.88 10.52 7.0-10.0 39	7.27 2.06 8.5-122 30	9.84 6.45 7.0-100 35	604 1.35 8.5-122 25	7.68 3.58 7.0-10.0 31	5.37 1.04 8.5-12.2 19	672 236 67-10.1
700 0.3307	Face vel R mm H ₂ O Throw in (M) N.C					8.48 2.82 9.1-13.1 36	11.48 8.76 7.6-10.9 42	7.05 1.83 9.1-13.1 32	896 483 7,6-110 37	626 1.40 9.1-13.1 25	7.84 3.25 7.6-10.9 31
800 0.3778	Face vel P. mm H ₂ O Throw in (M) N.C							8.05 2.41 9.8-14.0 36	10.24 6.35 8.2-11.9 41	7.16 1.83 9.8-13.7 33	8.95 4.22 8.2-11.9 37
900 0.425	Face vel P. mm HuO Throw in (M) N.C							906 305 100-14.6 40	11.52 8.0 8.5-12.5 45	805 231 100-145 36	10.07 5.3 8.4-12.5 41

- Face velocity is measured in m/sec.
- Total pressure loss in mm of H₂O & Area factor in squre meter.
- Throw(meters)is measured for a terminal velocities of o.5 & 0.25 m/sec.
 - NC baced on a room attenuation of 10 dB.

CFM Milsec	Listed Size in mm x mm	350 x 400 x 500 x 600 x 900 x	300 250 200	400 x 500 x 600 x 750 x	300 250	500 x 600 x 700 x 900 x 1200 :	300 250 200	450 x 500 x 800 x 1000 x	400
	Area factor Defection	0.0633	0.0529 45°	0.0827 0°	0.072 45°	0.0962	0.0853 45 ⁹	0.1069 0'	0.097 45°
500 0.2362	Face vel Pr mm HzO Throw in (M) N.C	3.73 0.48 7.3-10.9 <15	4.47 1.02 5.8-9.1 16	286 028 6.7-10.7 <15	3.28 0.45 5.5-9.1 <15	2.46 0.20 9.5-10.4 <15	2.77 0.31 5.2-9.1 <15	2.21 0.15 6.1-10.1 <15	2.43 0.23 4.9-8.8 <15
600 0.2834	Face vel P. mm H-O Throw in (M) N.C	4.47 0.71 8.2-11.9 16	5.36 1.45 6.4-10.1 20	3.43 0.41 7.6-11.6 <15	3.94 0.63 6.4-10.1 18	295 0.31 7.3-11.3 <15	3.32 0.43 6.1-10.1 15	2.65 0.23 7.0-10.7 <15	292 0.31 6.1-9.8 <15
700 0.3307	Face vel Pr.mm.HsO Throw in (M) N.C	5.22 0.96 8.8-12.8 22	6.25 1.98 7.3-10.9 26	4.0 0.56 8.5-12.5 19	4.59 0.86 7.0-11.0 23	3.44 0.41 8.5-12.2 16	3.88 0.56 7.0-10.9 20	3.09 0.31 8.2-11.9 15	3.4 0.43 6.7-10.7
800 0.3778	Face vel Pr.mm HrO Throw in (M) N.C	5.97 1.27 9.8-13.4 30	7.14 2.59 8.2-11.9 32	4.57 0.71 9.5-13.1 26	5.25 1.14 7.9-10.6 28	3.93 0.53 9.5-13.1 21	4.43 0.74 7.9-11.6 25	3.53 0.38 9.1-12.5 20	3.89 0.56 7.6-11.3 24
900 0.425	Face vel Pi mm H ₂ O Throw in (M) N.C	6.71 1.60 10.1-14.6 33	8.03 3.25 8.5-12.5 36	5.14 0.91 10.1-14.3 30	5.9 1.45 8.5-12.2 33	4.42 0.68 10.1-14.0 25	4.98 0.94 8.5-12.2 30	3.98 0.48 9.8-13.7 24	4.38 0.71 8.2-12.2 29
1000 0.472	Face vel Pr mm HsO Throw in (M) N.C	7.44 1.98 10.7-15 37	8.92 4.01 9.1-13 40	5.69 1.11 10.4-15 34	6.55 1.78 9.1-13.1 36	4.92 0.84 10.4-14.6 30	5.55 1,17 9.1-13.1 33	4.45 0.61 10.1-14.3 29	4.86 0.86 9.2-13.1 32
1100 0.519	Face vel P-mm H-O Throw in (M) N.C	8.18 2.39 10.9-16 40	9.81 4.88 9.8-14 45	6.25 1.35 10.7-15 36	7.21 2.16 9.8-14 40	5.41 1.02 10.7-15.0 33	36	4.89 0.74 10.4-14.9 32	5.35 1.07 9.8-14 35
1200 0.567	Face vel P-mm H ₂ O Throw in (M) N.C			6.83 1.60 11.3-16 38	7.87 2.54 10.4-15 43	5.91 1.22 11.3-15.9 36	6.67 1.68 10.4-14.9 40	5.35 1.0 11-15.2 35	5.84 1.24 10-14.8 39
1400 0.661	Face vel P. mm HzO Throw in (M) N.C			7.96 2.18 12.2-17 44	9.18 3.51 11-15.5 49	6.88 1.65 12.2-16.8 41	7.77 2.28 10.9-15.2 44	6.23 1.19 11.6-16.2 40	6.81 1.73 10.4-15 43

Face velocity is measured in m/sec.

NC baced on a room attenuation of 10 dB.

Total pressure loss in mm of H₂O & Area factor in soure meter.

Throw(meters)is measured for a terminal velocities of o.5 & 0.25 m/sec.

CFM Misec	Listed Size in min x mm	600 x 900 x 800 x 1200	250	900 x 900 x 1100 1400	300 ×250	900 1000	: 600 : 400 × 350 × 300	900 1000 1500	600 500 x 450 x 300 x 375	900	x 750 x 700 x 600 x 500
	Area factor Deflection	0.1352	0.1 49	0.162	0.1159 49	0.216 0'	0.162 45°	0.27	02% 49	0.354	0.288 45'
1100 0.519	Face vel P. mm H ₂ O Throw in (M) N.C	384 064 98-143 30	5.19 0.98 9.2-13.2 33	3.20 0.59 9.2-13.6 28	4.48 0.84 8.6.12.8 29	2.4 0.52 8.8-13.0 25	3.2 0.76 8.1-11.3 27	192 0.42 7.0-9.1 20	2.4 0.62 6.2-8.3 24		
1200 0.567	Face vel P. mm H ₂ O Throw in (M) N.C	4.19 0.87 10.3-14.8 32	5.67 1.09 9.8-14.0 35	35 0.69 9.7-143 30	489 092 91-132 32	263 058 93-138 27	35 0.81 8.4-11.9 29	2.1 0.48 7.5-10.8 24	263 071 68-94 26	1.6 0.38 6.3-9.2 20	197 051 5.7-8.1 22
1400 0.661	Face vel P. mm H ₂ O Throw in (M) N.C	4.89 0.93 10.8-15.4 35	6.61 1.51 10.2-14.6 38	408 0.76 10.1-15.0 33	5.7 1.21 9.7-13.8 35	306 063 9,7-143 30	408 098 88-113 32	2.45 0.51 8.1-11.3 27	306 0.79 7.3-10.1 29	1,87 0.43 68-10.1 23	2.29 0.58 6.1-8.8 25
1600 0.756	Face vel P. mm H.O Throw in (M) N.C	559 103 11.5-16.9 38	7.56 1.82 10.8-15.1 40	467 084 106-154 36	652 1.43 10.1-145 37	35 071 101-148 33	-482 1.12 93-121 34	28 0.63 8.8-12.1 29	35 091 79-107 31	2.13 0.51 7.3-10.9	263 064 67-92 28
1800 0.85	Face vel P. mm Ho Throw in (M) N.C	629 1,32 126-182 41	85 224 11.4-17:3 44	525 097 11.8-16-7 39	733 173 107-153 41	394 082 109-16.1 36	532 134 98-141 37	3.15 0.72 10.1-14.2 31	394 1.13 82-122 33	2.4 0.58 7.9-11.6 28	295 0.78 7.1-9.8 31
2000 0.945	Face vel P. mm H ₂ O Throw in (M) N.C	699 161 138-197 44	9.78 2.53 12.4-18.6 47	5.83 1.03 19.2-18.1 41	815 192 116165 43	438 088 121-173 39	5.83 1.52 10.3-14.8 41	35 0.78 10.7-15.1 33	438 123 88-13.1 36	2.7 0.61 8.2-11.8 28	328 083 7,4-10,4 32
2200 1.039	Face vel P. mm HuO Throw in (M) N.C			6.41 1.16 14.3-19.5 44	896 242 124-177 47	481 095 128-18.1 41	6.41 1.82 10.9-15.7 44	385 0.63 11.2-16.4 35	481 1.45 93-13.8 39	2.94 0.72 8.9-13.0 30	361 0.98 8.1-11.3 33
2400 1.134	Face vel P. mm H.O Throw in (M) N.C					525 1.13 13.7-19.2 43	70 204 11,4-16,4 46	42 0.93 122-173 37	525 163 99-147 42	32 0.81 95-13.8 32	3.94 1.03 8.7-12.1 35
2600 1.228	Face vol P. mm HuO Throw in (M) N.C					569 143 144213 45	758 2.43 12.1-17.6 48	455 107 13.1-18.4 40	569 1.93 10.7-15.4 44	3.47 0.92 10.7-15.7 33	426 132 93-132 37

- Face velocity is measured in m/sec.
- Total pressure loss in mm of H₂O & Area factor in soure meter.
- Throw(meters)is measured for a terminal velocities of 0.5 & 0.25 m/sec.
 - NC baced on a room attenuation of 10 dB.

STANDARD SIZES & AIR FLOW FIXED HORIZONTAL BLADE AT 45° DEFLECTION

Listed size in	Face vel m/sec.	1.5	20	25	3.0	35	4.0	4.5	5.0
mm x mm	P _s mm H ₂ O	0.91	1.63	2.54	3.68	4.97	6.5	8.33	10.16
250x100 / 200x125 150x150	CFM M*/sec. NC	60 0.0283 <15	60 0.0378 16	100 0.0472 24	120 0.0567 27	140 0.0661 31	160 0.0756 36	180 0.085 41	200 0.0945 45
200x150 / 250x125 300x100	CPM M/Isec. NC	81 0.0383 <15	108 0.051 16	135 0.0638 24	162 0.765 27	189 0.0893 31	216 0.102 36	243 0.1148 41	270 0.1275 46
250x150 / 300x125 400x100	CFM M/sec. NC	102 0.0482 <15	136 0.0642 15	170 0.0803 24	204 0.0964 27	238 0.1124 31	272 0.1285 36	306 0.1445 41	340 0.1606 46
300x150 / 350x125 450x100	CPM M/sec. NC	120 0.0567 <15	160 0.0756 15	200 0.0945 25	240 0.1134 28	290 0.1322 31	320 0.1512 36	360 0.17 41	400 0.1889 47
250x200 / 350x150 400x125 / 500x100	CFM M/sec. NC	141 0.0666 <15	188 0.088 16	235 0.1109 24	282 0.1332 27	329 0.1554 31	376 0.178 35	423 0.199 40	470 0.222 47
250/250 / 300i/200 400i/150 / 500i/125 600i/100	CPM M/sec. NC	162 0.0765 <15	216 0.102 16	270 0.1275 24	324 0.153 27	378 0.1785 31	432 0.204 35	486 0.2295 42	540 0.255 47
300x250 / 450x150 500x150 / 600x125 750x100	CPM Misec. NC	180 0.085 <15	270 0.1133 17	300 0.142 23	360 0.17 27	420 0.198 31	480 0.2267 35	540 0.255 40	600 0.2833 46
300x300 / 350x250 450x200 / 600x150	CPM M/sec. NC	240 0.1133 <15	320 0.151 18	400 0.1889 23	480 0.2267 27	560 0.2645 31	640 0.302 35	720 0.3401 40	800 0.3778 47
350x300 / 400x250 500x200 / 750x150	CPM M/sec. NC	300 0.1416 <15	400 0.1889 19	500 0.236 23	600 0.283 27	700 0.331 32	800 0.3778 36	900 0.425 40	1000 0.4723 48
350x350 / 400x300 500x250 / 600x200 900x150	CPM M/sec. NC	360 0.17 <15	480 0.2267 21	600 0.283 24	720 0.34 27	840 0.3967 32	960 0.453 36	1080 0.51 40	1200 0.5667 48
400x350 / 550x250 700x200	CRM Mrisec. NC	420 0.198 <15	560 0.264 21	700 0.331 24	840 0.397 28	980 0.463 33	1120 0.529 37	1260 0.595 41	1400 0.661 49
400x400 / 500x300 600x250 / 800x200	CFM Misec. NC	480 0.2267 16	640 0.3023 22	800 0.3778 25	960 0.453 29	1120 0.529 33	1280 0.6046 38	1440 0.68 42	1600 0.7556 49
500:350600:300 700:250900:200 1000:150	CFM M/sec. NC	540 0.255 17	720 0.3401 22	900 0.4251 25	1080 0.51 29	1260 0.51 34	1440 0.6801 42	1620 0.765 43	1800 0.85 50
450x450 / 500x400 750x250 1000x200	CRM Milsec. NC	600 0.2834 18	800 0.3778 23	1000 0.4723 26	1200 0.5668 30	1400 0.6612 35	1600 0.7556 43	1800 0.85 41	2000 0.9446 50
500x500 / 550x450 750x300 / 900x250 1000x200	CRM Milsec. NC	660 0.3117 18	880 0.4156 23	1100 0.5195 27	1320 0.6234 31	1540 0.7273 36	1760 0.8313 40	1980 0.935 44	2200 1,039 52

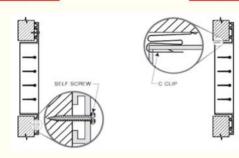
Face velocity is measured in m/sec.

NC based on room attenuation of 10 dB

P₅: Static pressure loss in mm of H₂O

Listed size in	Face vel misec.	2.5	3.0	3.5	4.0	4.5	5.00	5.50	6.00
mm x mm	P _c mmH _c O	1.7	2.46	3.35	4.37	5.59	6.86	8.38	9.9
250x100 / 200x125 150x150	CFM M!sec. NC	150 0.071 <15	180 0.085 19	210 0.099 22	240 0.113 25	270 0.127 29	300 0.142 33	330 0.156 36	360 0.17 38
200x150 / 250x125 300x100	OFM M/sec. NC	180 0.085 <15	210 0.099 18	240 0.113 22	290 0.132 26	320 0.151 29	350 0.165 33	390 0.184 35	420 0.198 37
250x150 / 300x125 100x100	OFM M/sec. NC	220 0.104 16	260 0.123 20	310 0.146 25	350 0.165 28	400 0.189 31	440 0.208 35	490 0.231 38	530 0.250 40
000x150 / 350x125 150x100	CFM M/Isec. NC	240 0.113 15	290 0.137 20	340 0.161 24	390 0.184 27	440 0.208 30	490 0.231 34	540 0.256 37	590 0.279 40
250x200 / 350x150 400x125 / 500x100	CFM Misec. NC	270 0.127 <15	320 0.151 17	370 0.165 21	420 0.198 24	480 0.227 28	530 0.25 31	590 0.279 35	640 0.302 38
250x256 / 300x200 400x150 / 500x125 600x100	CFM Milsec. NC	310 0.146 15	370 0.165 19	430 0.203 23	490 0.231 26	550 0.259 30	610 0.288 34	680 0.321 36	740 0.349 39
300x250 / 450x150 500x150 / 600x125 750x100	CPM Milsec. NC	360 0.17 15	0.208 20	510 0.241 24	580 0.274 27	660 0.312 31	730 0.345 34	810 0.382 37	800 0.416 39
300x300 / 350x250 450x200 / 600x150	CFM Misec. NC	420 0.198 <15	500 0.236 15	590 0.279 23	670 0.316 27	750 0.354 30	840 0.397 34	930 0.439 37	1020 0.482 40
350x300 / 400x250 500x200 / 750x150	CPM Misec. NC	450 0.213 <15	540 0.255 16	630 0.297 21	770 0.34 25	810 0.382 29	900 0.425 33	1000 0.472 37	1090 0.514 40
350x350 / 400x300 500x250 / 600x200 900x150	CPM Milsec. NC	510 0.241 15	620 0.293 20	720 0.340 24	820 0.387 29	930 0.439 32	1030 0.486 37	1140 0.538 40	1240 0.586 43
400x400 / 500x300 600x250 / 800x200	CFM Misec. NC	580 0.274 15	700 0.331 20	820 0.387 25	940 0.444 30	1050 0.496 34	1170 0.553 38	1290 0.609 41	1400 0.661 44
500x350600x300 700x250900x200 1000x150	CPM Misec. NC	660 0.312 16	800 0.378 22	930 0.439 26	1060 0.501 32	1200 0.567 35	1330 0.628 39	1470 0.694 42	1600 0.756 45
450×450 / 500×400 750×250 1000×200	CPM Misec. NC	700 0.331 16	840 0.397 21	980 0.463 25	1120 0.529 30	1270 0.599 33	1400 0.661 35	1550 0.732 39	1690 0.796 43
500x500 / 550x450 750x300 / 900x250 1000x200	CPM M/sec. NC	800 0.378 18	970 0.458 23	1130 0.533 27	1290 0.605 33	1440 0.68 38	1600 0.756 40	1770 0.836 43	1930 0.912 45

Face velocity is measured in m/sec.


P_s: Static pressure loss in mm of H_sO

NC based on room attenuation of 10 dB

FIXING DETAILS & HOW TO ORDER

Screw Fixing

Concealed Fixing

How to Order:

Model	Aerofoil Blade	Size	Front Blade Option	Fixing Method	Finish	Quantity
SH-WG	H= Front Horizontal	Neck Size	Fixed	Concealed fixing(CF)	A=RAL 9010 B=RAL 9016 C=RAL	Numbers
RV-WG	V=Front Vertical	(In mm)	Adjustable	Screw Fixing (SC)	Other Color	

Order Example:

To select supply air grille, front horizontal aerofoil blades of size 500 X 250 mm, Qty =50 Nos, with

RAL - 9010 color finish

Ex: SH-WG -600 X 200 - 60 Nos

Linear Bar Grilles

General:

The winner central air conditioning linear bar designed for various throw level and variety of standard and fixed deflections of air flow. Linear bar grilles are mainly used in the side walls of the air-conditioning buildings to ensure the uniform air flow with minimized noise level. Linear bar registers supplied with opposed blade dampers with adjustable rear aerofoil blades.

Supply air Linear Bar Grilles

Model: SLG-WG

Description:

- Frame and face bars are of high quality extruded aluminum profiled constriction with the a dvantages of corroding resistance and rigidity.
 - Horizontal face bar with 0°, 15°-1 way throw and 15°-2 way throw are fixed rigidity to the frame with 8 mm pines.
 - Vertical aluminum aerofoil blades are fixed at the rear side of the frame by nylon bushes. These blades can be adjusted manually and individually in the vertical panel to obtain optimum air distribution.
 - Total structure is manufactured by mechanical assembly, assuring rigidity and to maintain straight-line appearance.
- Supplied with C clamps for concealed fixing.

- Extruded aluminum profile frame with 30 mm flange width and 45 mm height
- 4mm, 5mm&6mm face width and 18mm height aluminum extruded blades.
- Extruded aluminum profile with 18mm height and aerofoil shaped.
- 0", 15" single way & double way & 35" single way deflection front blades. 50mm to 300mm width (or height) with 50mm increments as standard.
- Any length from 200 to 6 Mt

Return air Linear Bar Grilles

Model: RLG-WG

Description:

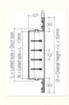
- Frame and face bars are of high quality extruded aluminum profiled constriction with the advantages of corroding resistance and rigidity.
- Horizontal face bar with 0", 15"-1 way throw and 15"-2 ways throw are fixed rigidity to the frame with 8 mm pipes.
- Vertical aluminum aerofoil blades are fixed at the rear side of the frame by nylon bushes. These blades can be adjusted manually and individually in the vertical panel to obtain optimum air distribution.
- Total structure is manufactured by mechanical assembly, assuring rigidity and to maintain straight- line appearance.
- Supplied with C clamps for concealed fixing.

- Extruded aluminum profile frame with 30 mm flange width and 45 mm height
 4mm, 5mm&6mm face width and 18mm height aluminum extruded blades.
- Extruded aluminum profile with 18mm height and aerofoil shaped.
- 0°. 15° single way & double way & 35° single way deflection front blades.
- . 50mm to 300mm width (or height) with 50mm increments as standard.
- · Any length from 200 to 6 Mt.
- Bar spacing 12mm as standard 6mm as optional.

Supply air Linear Bar Grilles

Model: SLGD-WG

Description:


- Frame and face bars are of high quality extruded aluminum profiled constriction with the advantages of corroding resistance and rigidity.
 - Horizontal face bar with 0°, 15°-1 way throw and 15°-2 ways throw are fixed rigidity to the frame with 8 mm pipes.
- Vertical aluminum aerofoil blades are fixed at the rear side of the frame by nylon bushes. These blades can be adjusted manually and individually in the vertical panel to obtain optimum air distribution.
- Total structure is manufactured by mechanical assembly, assuring rigidity and to maintain straight-line appearance.
- Supplied with C clamps for concealed fixing.

- Extruded aluminum profile frame with 30 mm flange width and 45 mm height
- 4mm, 5mm&6mm face width and 18mm height aluminum extruded blades.
 Extruded aluminum profile with 18mm height and aerofoil shaped.
- Extruded aluminum profile with 18mm height and aerofoli shaped.
 0°. 15° single way & double way & 35° single way deflection front blades.
- 50mm to 300mm width (or height) with 50mm increments as standard.
- Any length from 200 to 6 Mt.
- Bar spacing 12mm as standard 6mm as optional.

Return air Linear Bar Grilles

Model: RLR-WG

Description:

- Frame and face bars are of high quality extruded aluminum profiled constriction with the advantages of corroding resistance and rigidity.
- Horizontal face bar with 0°, 15°-1 way throw and 15°-2 ways throw are fixed rigidity to the frame with 8 mm pipes.
- Vertical aluminum aerofoil blades are fixed at the rear side of the frame by nylon bushes. These blades can be adjusted manually and individually in the vertical panel to obtain optimum air distribution.
- Total structure is manufactured by mechanical assembly, assuring rigidity and to maintain straight-line appearance.
- Supplied with C clamps for concealed fixing.

- Extruded aluminum profile frame with 30 mm flange width and 45 mm height
- 4mm, 5mm&6mm face width and 18mm height aluminum extruded blades.
- Extruded aluminum profile with 18mm height and aerofoil shaped. 0°, 15° single way & double way & 35° single way deflection front blades.
- 50mm to 300mm width (or height) with 50mm increments as standard.
- Any length from 200 to 6 Mt.
- Bar spacing 12mm as standard 6mm as optional.

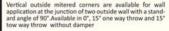
Curved Linear Bar Grilles

Model: CLR-WG

Description:

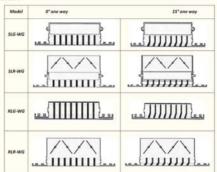
- Frame and face bars are of high quality extruded aluminum profiled constriction with the advantages of corroding resistance and rigidity.
- Supply and return air curved liner bar grill are available up to a length of 3 mts a minimum radius of curvature of 1 meter.
- For perfect unbroken appearance of continuous runs, alignment strip are provide with no additional cost
- Horizontal face bar with 0°, 15°-1 way throw and 15°-2 ways throw are fixed rigidity to the frame with 8 mm pipes.
- Vertical aluminum aerofoil blades are fixed at the rear side of the frame by nylon bushes. These blades can eadjusted manually and individually in the vertical panel to obtain optimum air distribution.
- Total structure is manufactured by mechanical assembly, assuring rigidity and to maintain straight- line appearance.
- Supplied with C clamps for concealed fixing.

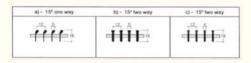
- Extruded aluminum profile frame with 30 mm flange width and 45 mm height
 4mm, 5mm&6mm face width and 18mm height aluminum extruded blades.
- Extruded aluminum profile with 18mm height and aerofoil shaped.
- O*, 15* single way & double way & 35* single way deflection front blades.
- 50mm to 300mm width (or height) with 50mm increments as standard.
- Any length from 200 to 6 Mt.
- Bar spacing 12mm as standard 6mm as optional.


Optional Mitered Corners

Standard 90* horizontal mitered corner available for floor. sill and ceiling application in 0°, 15° one way throw and 15° two way throw without damper.

Special horizontal mitered corner selection available for floor, sill and ceiling application includes an angle greater than 90° and less than 180° available in 0°, 15° one way throw and two way throw without damper.




Vertical inside mitered corners are available for wall application at the junction of two inside walls with a standard angle of 90°. Available in 0°, 15° one way throw and 15" tow way throw without damper

Bar Deflections

Standard

Optional

0° Deflection/12mm blade spacing/Supply linear bar grilles

Width (mm) Ak in m²	Face Velocity	2.0	2.5	3.0	3.5	4.0	4,5	5.0
0.039	MYSec. CFM PS in mm H ₂ O Throw (Mt.) NC	0.08 169 0.14 2.7-4.1-5.6 <15	0.1 213 0.20 3.5-4.4-6.2 <15	0.12 256 0.20 4.1-5.1-7.1 <15	0.14 297 0.23 4.5-5.5-79 17	0.16 339 0.29 4.9-5.8-8.2 22	0.19 381 0.37 5.4-6.4-9.4 25	0.2 423 0.45 5.46,8-9.7 31
0.059	M*/Sec. CFM PS in mm H ₂ O Throw (Mt.) NG	275 0.13 0.15 3.5-4.6-7.1 <15	346 0.164 0.20 4.1-5.3-7.8 <15	413 0.196 0.20 4.8-5.9-8.5 15	483 0.228 0.28 5.3-6.3-9.2 18	550 0.26 0.36 5.8-7.2-10.1 23	620 0.293 0.46 6.4-8.1-11.4 27	689 0.326 0.56 6.9-8.6-12.5 32
150 0.078	M*/Sec. CFM PS in mm H ₂ O Throw (Mt.) NC	373 0.177 0.15 4.2-5.7-8.3 <15	466 0.22 0.19 4.7-6.2-9.1 <15	559 0.264 0.23 5.5-7-10.2 16	653 0.309 0.33 6.2-7.7-10.9	745 0.352 0.42 6.9-8.7-11.6 24	838 0.397 0.54 7,4-9,3-13.1 29	932 0.44 0.65 7.8-9.8-14.0
200 0.097	M*/Sec. CFM PS in mm H ₂ O Throw (Mt.) NC	470 0.222 0.16 4.6-6.2-8.0 <15	589 0.278 0.20 5.3-6.9-10.1 16	706 0.334 0.29 6.4-7.8-11.3	824 0.389 0.36 7.1-8.5-12.3 21	940 0.443 0.49 7.9-9.5-13.1 26	1059 0.499 0.6 8.4.10.4-14.5 32	1175 0.556 0.84 9.9-11,0-15.5
250 0.116	MP/Sec. CFM PS in mm H ₂ O Throw (Mt.) NC	567 0.269 0.19 5.1-6.8-10 <15	709 0.336 0.23 5.6-7.8-11 16	851 0.403 0.32 6.7-8.5-12.1 21	964 0.470 0.40 7.6-8.4-13.4 27	1135 0.536 0.53 8.6-10.3-14.4 31	1277 0.604 0.71 9.0-11,-15.9 35	1420 0.68 0.87 9.5-11.9-17.5
0.136	MYSec. CFM PS in mm H ₂ O Throw (Mt.) NC	686 0.324 0.19 5.3-7.5-10.8 <15	857 0.405 0.28 6.2-8.4-11.8 18	1029 0.487 0.33 7.2-9.4-13.0 25	1200 0.567 0.44 8.4-10.5-14.4 30	1372 0.648 0.59 9.3-11.2-15.4 33	1543 0.729 0.78 9.6-12,2-17,0 37	1715 0.81 0.94 10.2-13-18.6 42

- Data based on one meter unit length of the grille with damper in full open position.
- Face velocity is measured in m/sec.
- Static pressure (Ps) loss is in mm of H₂O
- Throw (meters) is measured for terminal velocities of 0.75, 0.5 & 0.25 m/sec.
 - NC based on a room attenuation of 10 dB

Performance Data 0° Deflection/12mm blade spacing/Returns linear bar grilles

Width (mm) Ak in m²							
50	MS/Sec.	0.157	0.197	0.236	0.276	0.315	0.354
	CFM	332	418	501	586	667	751
	PS in mm H ₂ O	0.43	0.70	1.00	1.38	1.83	2.24
	NC	<15	18	25	31	33	38
100	M3/Sec.	0.197	0.236	0.276	0.315	0.354	0.393
	CFM	418	501	586	667	751	833
	P5 in mm H ₂ O	0.46	0.67	0.89	1.15	1.49	1.78
	NC	<15	18	24	31	34	36
150	M3/Sec.	0.236	0.275	0.315	0.354	0.383	0.472
	CFM	501	585	667	751	833	1000
	PS in mm H ₂ O	0.46	0.65	0.81	1.04	1.27	1.83
	NC	15	17	26	29	30	36
200	M3/Sec.	0.276	0.315	0.354	0.363	0,472	0.551
	CFM	586	667	751	833	1000	1168
	PS in mm H ₂ O	0.43	0.54	0.67	0.91	1.4	1.9
	NC	17	22	25	27	33	38
250	M3/Sec.	0.315	0.354	0.363	0.472	0.551	0.629
	CFM	967	751	833	1000	1168	1332
	PS in mm H ₂ O	0.43	0.57	0.66	0.94	1.28	1,67
	NC	19	22	23	29	33	36
300	M3/Sec.	0.354	0.393	0.472	0.551	0,629	0.708
	CFM	751	833	1000	1168	1330	1500
	PS in mm H ₂ O	0.46	0.58	0.69	0.99	132	1.7
	NC	20	22	24	29	36	40

- Data based on one meter unit length of the grille.
- Ps Static pressure loss is in mm of H₂O NC based on a room atteunation of 10 dB

Width

Performance Data 15° Deflection/12mm blade spacing/Supply linear bar grilles

(mm) Ak in m*	Face Velocity	2.0	2.5	3.0	3,5	4,0	4.5	5.0
50	M*/Sec. CFM PS in mm H ₂ O	0.08 170 0.15	213 0.20	0.12 255 0.21	0,15 297 0.26	0.17 339 0.32	0.19 381 0.40	0.2 423 0.5
0.040	Throw (Mt.) NG	2,7-4,1-5,5 <15	3,5-4,4-6,1 <15	4.1-5.0-7.1 <15	4.5-5.5-7.7	4,8-5,8-8,2 22	5.1-6.2-8.9 25	5.2-6.4-9.3 31
100	M*/Sec. CFM	0.14 276	0.164	0.196	0.228	0.26	0.293	0.326
	PS in min H ₂ O	0.15	0.20	0.22	0.3	0.38	0.5	0.6
0.066	Throw (Mt.)	35-46-7.1	41-53-7.8	475984	5.3-6.2-0.0	5.8-7.1-9.7	6.1-7.7-10.8	6.4-8.2-11.7
0.000	NC (GC.)	<15	<15	15	18	23	27	32
150	M*/Sec.	0.177	0.22	0.263	0.309	0.353	0.397	0.44
	CFM	373	466	558	653	746	538	932
	PS in mm H ₂ O	0.15		0.26	0.37	0.46	0.58	0.7
0.088	Throw (Mt.) NG	4.2-5.7-8.3 <15	4.746.248.1 <15	5.4-6.8-10 16	19	6.7-8.5-11.5 24	7.1-8.9-12.5 29	7.4-9-313.2 34
200	M*/Sec.	0.223	0.278	0.334	0.390	0.443	0.499	0.556
	CFM	471	589	706	825	940	1059	1175
	PS in mm H ₁ O	0.19	0.21	0.33	0.38	0.52	0.66	0.10
0,111	Throw (ML) NG	47-63-8.1 <15	5.3-6.9-10.0 16	6.1-7.8-11.3	6.9-8.3-11.9 22	7.7-9.2-12.8 26	8.9.9-13.8 32	8.5-10.4-14.9 36
250	MP/Sec.	0.269	0.336	0.403	0.470	0.537	0.604	0.68
	CFM	568	710	851	994	1135	1277	1420
	PS in mm H ₂ O	0.2	0.26	0.34	0.43	0.57	0.78	0.94
0.134	Throw (Mt.) NG	5.1-6.8-11 <15	5.6-7.8-11 16	5.6-8.3-11.8 21	7.6-9.3-12.8 27	31	8.5-10.5-15.1 35	9.1-12.3-16.4
300	M*/Sec.	0.324	0.405	0.487	0.567	0.648	0.729	0.81
	CFM	686	857	1029	1200	1372	1543	1715
10000	PS in mm H ₂ O	0.2	0.3	0.36	0.48	0.64	9.2-11.6-15.2	1.01
0.162	Throw (Mt.) NG	5.3-7.5-10.8 <15	628.411.8	7.2-9.4-12	82-10.2-13.9	8.9-10.9-15	37	9.6-12.317.6 42

- The above data based on one meter long linear grille with damper in full open
- position.
 Face velocity is measured in m/sec.
- Static pressure (Ps) loss is in mm of H₂O
- Throw (meters) is measured for terminal velocities of 0.75, 0.5 & 0.25 m/sec.
 - NC based on a room attenuation of 10 dB

15° Deflection-one Way12mm blade spacing/Returns linear bar grilles

Width (mm) Ak in m*		j.	Volume / Velo	city / Pressure	Drop & Noise	Level	
50	CFM M/Sec. -PS in mm H ₂ O NC	332 0.157 0.46 <15	418 0,197 0,73 <18	501 0,296 1,04 25	586 0.276 1.43 31	067 0.315 1.89 32	751 0,354 2:33 41
100	CFM M/Sec. -PS in nee H ₂ O NC	418 0.197 0.49 <15	501 0.296 0.69 20	586 0.276 0.94 25	667 0.315 1.20 31	751 0.354 1.56 35	833 0.393 1.88 38
150	CFM M/Sec. -PS in mm H ₁ O NC	501 0.236 0.49 16	585 0.276 0.67 20	667 0.315 0.86 27	751 0.354 1.11 32	833 0.363 1.34 32	1000 0.472 1.92 37
200	CFM M/Sec. -PS in min H ₁ O NC	586 0.275 0.46 17	667 0.315 0.64 23	751 0.354 0.79 26	833 0.363 0.99 30	1000 0.472 1.37 34	1168 0.551 1.86 39
250	CFM M/Sec. -PS in mm H2O NC	667 0.315 0.45 19	751 0.354 0.59 23	633 0.363 0.71 24	1000 0.472 1.02 30	1168 0.551 1.37 34	1332 0,629 1,79 38
300	CFM M/Sec. -PS in mm H ₂ O NC	751 0.354 0.49 20	833 0.393 0.6 23	1000 0.472 0.74 25	1168 0.551 1.06 30	1333 0,629 1,45 37	1500 0.708 1.8 42

- The above data is derived based on one meter long linear grille with damper in full open position.
- Static pressure (Ps) loss is in mm of H₂O
- NC based on a room attenuation of 10 dB

15" Deflection-2 Way 12mm blade spacing/Supply linear bar grilles

Width (mm) Ak in m²	Face Velocity (M/Sec.)	2.0	2.5	3.0	3.5	4.0	4.5	5.0
0.039	M*Sec. CFM PS in mm H ₂ O Throw (Mt.) NC	0.078 165 0.15 2.7-4.0-5.5 <15	0.098 207 0.21 3.44,36,0 <15	0.117 248 0.21 4.0-4,9-6.7 <15	0.137 290 0.25 4.3-5.2-7,7 16	0.156 330 0.32 4.6-5.5-7.6 22	0.176 373 0.4 4.95.8-8.2 25	0,195 413 0,51 4,9-6,0-8,5 30
0.059	M*/Sec. CFM PS in mm H ₂ O Throw (ML) NC	0.118 250 0.15 3.4-4.6-7.0 <15	0.149 314 0.22 4.05.27.5 <15	0.178 376 0.22 4.7-5,6-8.8	0.208 429 0.3 5.3-6.0-8.5 17	0.40	0.267 564 0.52 5.7-7,3-10 27	0.295 626 0.61 6.7-6.10.7
150 0.078	M*/Sec. CFM PS in mm H ₂ O Throw (Mt.) NC	0.157 331 0.15 4.0-5.5-8.0 <15	0.196 414 0.22 4.5-6.0-8.7 <15	0.235 496 0.26 5.3-6.8-9.5 <15	0.273 579 0.37 5.8-7.3-11 17	0.312 661 0.47 6.4-5-10.7 24	0.351 744 0.59 6.7-8.5-11.5 28	0.40 626 0.72 7.8-6-12.2 33
0.097	M*/Sec. CFM PS in mm H ₂ O Throw (ML) NC	0.195 411 0.24 5.2-6.8-0.8 <15	0.244 516 0.15 2.7-4.0-5.5 <15	0.292 617 0.32 6.1-7.6-10.7 16	0.336 719 0.36 6.5-8.0-11,4 22	0.389 822 0.54 7.4-8.8-11.9 27	0.438 926 0.67 7.7-9.5-12.9 32	0.486 1028 0.92 8.1-9.9-13.7
250 0.116	M*/Sec. CFM PS in mm H ₂ O Throw (Mt.) NG	0.233 492 0.2 4.9-6.8-8.8 <15	0.30 615 0.26 5.67.6-10.7	0.349 734 0.34 6.48.2-11.4	0.406 861 0.43 7.448.8-12.3 25	0.465 963 0.59 8.1-9.6-13.2 31	0.523 1106 0.77 8.3-10-14 35	0.59 1129 0.95 8.6-10.7-15 37
300 0.136	MYSec. CFM PS in mm H ₂ O Throw (Mt.) NC	0.273 577 0.2 5.3-7.4-10.8 <15	0.35 721 0.32 6.1-9.2-12.6	0.409 865 0.37 7.8-1.12.3 25	0.477 1009 0.48 7.9-9.9-13.1	0.545 1153 0.65 8.6-10.4-15 33	0.613 1296 0.86 8.9-11-15 35	0.66 1440 1.63 9.1-11.6-16.2

- The above data is derived based on one meter long linear grille with damper in full open position.
- · Face velocity is measured in m/sec.
- Static pressure (Ps) loss is in mm of H₂O
- Throw (meters) is measured for terminal velocities of 0.75, 0.5 & 0.25 m/sec.
 - NC based on a room attenuation of 10 dB

15" Deflection-2 Way 12mm blade spacing/Return linear bar grilles

Width (mm) Ak in m*	Volume / Velocity / Pressure Drop & Noise Level									
50	CFM M/Sec. -PS in mm H ₂ O NG	332 0.157 0.48 <15	418 0.197 0.75 18	501 0.236 1.08 26	586 0.276 1.47 32	667 0.315 1.91 36	751 0,354 2,42 42			
100	CFM M/Sec. -PS in mm H ₂ O NC	418 0.197 0.52 15	501 0.236 0.72 20	586 0.276 0.97 27	967 0.315 1.27 32	751 0.354 17 35	833 0.393 1.98 40			
150	CFM M/Sec. -PS in mm H ₂ O NC	501 0.296 0.52 17	585 0.276 0.69 22	667 0.315 0.89 28	751 0.354 1.15 32	833 0.393 1.40 34	1000 0.472 2.01 38			
200	CFM M/Sec. -PS in mm H ₂ O NC	586 0.276 0.49 16	667 0.315 0.64 23	751 0.354 0.82 26	833 0.393 0.99 32	1000 0,472 1,42 35	1168 0.551 1,92 40			
250	CFM M/Sec. -PS in mm H ₂ O NC	667 0.315 0.48 19	751 0.354 0.62 23	633 0.363 0.74 25	1000 0,472 1,07 31	1168 0.551 1.46 35	1332 0.629 1.9 40			
300	CFM M/Sec. -P'S in mm H ₂ O NC	751 0.354 0.6 20	833 0.363 0.64 25	1000 0.472 0.77 27	1168 0.551 1.14 31	1333 0.629 1.52 36	1500 0.708 2.0 44			

- The above data is derived based on one meter long linear bar grille without damper.
- Static pressure (Ps) loss is in mm of H₂O
- NC based on a room attenuation of 10 dB

EGG CRATE GRILLE

General:

The winner central air conditioning egg crate grilles are designed for return and exhaust application in air conditioned room. Since it has unique type of mesh formed by ½" X ½" squares, gives egg crate appearance. The same kinds of grill are used in elevators cabins also. As the egg crate louver is made by aluminum, we can have desired powder coated color which gives further rigidity to the construction.

Products Catalogue